Tomato crops release root chemicals to resist drought

Tomato crops release root chemicals to resist drought

New research shows how tomato plants protect themselves from drought by waterproofing their roots.

Plants have to be flexible to survive environmental changes, and the adaptive methods they deploy must often be as changeable as the shifts in climate and condition to which they adapt. To cope with drought, plant roots produce a water-repellent polymer called suberin that blocks water from flowing up towards the leaves, where it would quickly evaporate. Without suberin, the resulting water loss would be like leaving the tap running.

In some plants, suberin is produced by endodermal cells that line the vessels inside the roots. But in others, like tomatoes, suberin is produced in exodermal cells that sit just below the skin of the root.

The role of exodermal suberin has long been unknown, but a new study by researchers at the University of California, Davis, published Jan. 2 in Nature Plants shows that it serves the same function as endodermal suberin, and that without it, tomato plants are less able to cope with water stress. This information could help scientists design drought-resistant crops.

“This adds exodermal suberin to our toolbox of ways to help plants survive for longer and cope with drought,” said Siobhan Brady, professor in the UC Davis Department of Plant Biology and Genome Center, and senior author on the paper. “It’s almost like a jigsaw puzzle—if you can figure out which cells have modifications that protect the plant during difficult environmental conditions, you can start to ask questions like, if you build those defenses up one upon the other, does it make the plant stronger?”

In the new study, postdoctoral scholar Alex Cantó-Pastor worked with Brady and an international team of collaborators to uncover the role of exodermal suberin and map the genetic pathways that regulate its production.

Continue reading.

Image by Freepik

Source:

Share